- cross-posted to:
- programmer_humor@programming.dev
- cross-posted to:
- programmer_humor@programming.dev
I get the feeling that all of these assembly jokes are justifications to avoid learning assembly.
You can still make syscalls in assembly. Assembly isnt magic. It isn’t starting from the creation of matter and energy, it’s just very specific code.
It’s just a joke friend.
I said so in my comment, try to keep up.
A very bad one if it requires switching off a large portion of your brain to find it funny.
suspension of disbelief
Assembly code is for writing C compilers, and C compilers are for writing Lisp interpreters.
I saw a Scheme interpreter written in assembly running a C compiler written in Scheme.
There’s actually good reasons for this design. It’s easy to write a Scheme interpreter in assembly, but it’s hard to write a C compiler in assembly that handles everything correctly. Much rather write it in higher level language if possible and Scheme lowers the bar to getting there, so you can get away from using assembly as quickly as possible. Or you can copy somebody else’s Scheme implementation of a C compiler because now you’re platform independent.
Then you can write your C compiler in C (or steal a better compiler already written in C) and close the loop. For your final step, you use the C compiler to compile itself.
Only the most very basic compilers. C compilers are in C mainly.
Not the first C compiler obviously. According to this Stack Overflow post, BCPL* begat B, which begat C. Language self-hosting is pretty fascinating.
*Perhaps BCPL was originally written in assembly; I’m not certain: https://github.com/SergeGris/BCPL-compiler
Talking about bootstrap here?
Indeed
And that’s how you get the Thompson hack
Back in High School in the 80’s me and a buddy wrote a Z-80 editor assembler in TRS-DOS BASIC.
It was not rocket science.
I never did get very far with the TRS-80 Editor Assembler, but that was my first exposure to such things.
I also remember the BASIC code for the Dancing Daemon which was replete with PEEKs and POKEs, such that much of it was written in machine code.
Exactly how we did it too. We created the editor/assembler that peeked to see what was there and display it in Assembly, Hexadecimal, and ASCII.
You could edit whichever version you wanted and it would Poke it into RAM.
You could also save swaths to a file.
True, it was computer science.
deleted by creator
Assembly is hard, because you need to understand your problem on multiple levels and get absolute zero guidance by compilers.
Even C guides you a tiny bit and takes away some of the low level details, so you have more mental capacity to actually solve your problem.
Oh, and you have a standard library. Assembly seems to involve solving everything yourself. No simple function call to truncate a string or turn a char array to uppercase.
deleted by creator
Missing “;” on line 148.
I wouldn’t be able to write Rollercoaster Tycoon in assembly because keeping track of all that code in assembly files must be hell, but people pretending like you need to be some kind of wizard to write assembly code are exaggerating.
Well, they’ve got a point for the bigger machine codes. Just the barebones specification for x86 is a doorstopper IIRC.
From what I’ve heard, writing big stuff in assembly comes down to play-acting the compiler yourself on paper, essentially.
deleted by creator
TIL. I had tried to understand it a bit, but felt lost pretty fast, and then eventually found out that’s because it’s huge. Is there a good intro to the basic instructions you’re aware of?
By “play act the compiler” I mean a fairly elaborate system of written notes that significantly exceeds the size of the actual program. Like, it’s no wonder they started thinking about building machine compilers at that stage.
deleted by creator
Thank you!
What language is your pseudocode example modeled after? It vaguely reminds me of some iOs App code I helped debug (Swift?) but I never really learned the language so much as eyeballed it with educated guesses, and even with the few things I double checked it has been a few years, so I have no clue what is or isn’t legal syntax anymore.
deleted by creator
I’ve heard of Kotlin in the context of Android apps, but never actually used or learned it. I did one mobile app dev project with Java in Android Studio, but never had any formal classes on it either and just learned as I went (the result was shit, but we got a decent grade for being able to evaluate the difficulties and shortcomings and point out learnings).
Having toyed with video game reverse engineering, I definitely feel like I ought to learn a bit more. I understand
mov
, pointers and registers, and I think there was someinc
andadd
in the code I read to try to figure out base pointers and pointer paths (using Cheat Engine), but I think knowing some more would serve me well there.deleted by creator
Look at mister fancy pants with and assembler.
How about entering straight opcode, operand with only a hex keypad and two pairs of 7 segment LEDs. You can only see one set of numbers at a time. You had to write it out on paper to be able to keep track and count positions so you don’t use your spot.
I had to do this as a project in school. Two 8088 units that we breadboarded to a UART that we used to drive a fiber optic link to communicate with each other with a basic protocol. All descrete components hand wired and coded.
It made you tie all of skills together into a full system of hardware and software.
Alright you and Joe McMillan had a great weekend we get it
Assembly used to be a required course for CS undergrads in the 90s. Is that no longer the case?
Also we had to take something called Computer Architecture, which was like an EE class designing circuits with gates and shit.
Which target did you use? Having to learn even a fraction of modern x86 would be ridiculous, but SPARC or something could be good to know, just to reduce the “magic box” effect.
I learned MIPS as an undergrad. Pretty neat little RISC architecture.
I learned mips as graduate. In undergrad had to build with logic gates for things like 2 digit decimal counter and my architecture classes were diagram blocks for a simple CPU. But by that time we knew how to do moderate complexity circuits in VHDL simulation, and we had to make a simple VHDL circuit run for real in FPGA.
This was a long time ago. I’m pretty sure it was 8086.
Its still a thing
Required course work for electrical engineers in the early 2000s.
I had to learn assembly but was one topic of many we handled in architecture. Like one question of one exam. That was one of the toughest professors we had, class was about 2001
I still had to do that in the late 2010s in college
I think the university I went to phased out the EE requirements the year after me. Honestly, I think it should be required. Understanding how the computer “thinks” is such an important skill.
I attended two different Bachelor’s courses, one with a very technical (2016-2018) and one with a more high level focus (2018-2023). The first did have a class where we learned how to go from logic gates to a full ALU as well as some actual EE classes, but I didn’t go far enough or memorise the list of classes to remember whether Assembly would have become a thing. We learned programming with first Processing, then C and C++.
The second had C as an elective course, and that was as technical and low-level as it ever got.
IMHO assembly isn’t hard. When you gain enough experience you start to see „visual patterns“ in your code. For example jumping over some lines often equals to a if/else statement or jumping back is often a loop etc. Then you are able to skim code without the necessity to read each line.
The most difficult part is to keep track of the big picture because it is so verbose. Otherwise it’s a handful or two of instructions you use 90+% of the time.
I needed it often in the past in the PLC world but it is dying out slowly. Nonetheless, when I encounter 30+ year old software I’m happy to be able to get along. And your experience transitions to other architectures like changing from one higher language to another.
Nonetheless, if I’m able to choose, I’ll take Go. Please and thank you 😊
The most difficult part is to keep track of the big picture because it is so verbose. Otherwise it’s a handful or two of instructions you use 90+% of the time.
It’s a long time since I wrote any assembly in anger, but I don’t remember this being an issue. Back then Id be writing 2D and 3D graphics demos. Reasonably complex things, but the challenge was always getting it fast enought to keep the frame rate up, not code structure.
As you say, I think you just establish patterns to decompose the problem.
Anyone who thinks OP asking about Assembly with this meme should play the game Turing Complete. It’s great. You have to design a computer all the way from the most basic logic gates (I think you only get a NAND gate to start), designing an ALU and CPU, creating your own machine language, and writing your own programs in the language you designed, and it’s all simulated the whole time. Machine language is pretty advanced as far as things go.
From your description this sounds more like a job in IBM’s R&D department than a game
All the best games sound like jobs when you describe them.
factorio, satisfactory, oxygen not included, RimWorld, Stellaris, dwarf fortress, gregtech new horizons…
So do many simulation games.
We got to do something simular in uni. We modeled the CPU in VHDL and had to set up our own language, then we were to program a game for it. One of the most fun and interesting courses we got to do!
It’s now been 18 years since the last time an employer paid me to write assembly, but it’s only been a year or so since the last time I had to read assembly at work (in order to verify what the compiler really was doing).
OS and embedded dev here. I use assembly all the time. I’ve even worked on firmware that was entirely in assembly of strict requirements that couldn’t be met in C.
Also even machine code hides a lot about how the underlying machine works so if you really want to do computing from scratch you really do hate to invent the universe because there’s abstractions all the way up the hardware stack just like there is in software.
Not exactly accurate, I think. Even machine language is bound by the CPU’s architecture. You can’t do anything in machine language that wasn’t specifically provided for by the CPU architects.
It would be more accurate to say it’s like creating a new universe using all the same laws of physics, thermodynamics, cosmology, ethics, etc as our existing universe.
I don’t think accuracy was the goal, it is a joke not a dissertation. It’s more about how it feels to try a language like assembly after working with higher-level languages.
Ha! I teach assembly and use this one every year to lighten the mood before midterms.
I remember watching assembly demos in the early-mid 90s and thinking those guys were wizards
I had an assembly class in college. I didn’t love of at all. Got my first job after graduating and it was writing space shuttle engine control software, which was in assembly. I was kind of surprised at how fast it became natural after dealing with it full time. Still, it felt luxurious when we upgraded the controller and could do the software in C.
“oh no, I had to do literal rocket science”
In college back in 1991. Also had to do PASCAL and FORTRAN but thankfully those two were in a single course.
I also took PASCAL in the 90s, but it is considered a high level language, and writes similarly to other high lvl languages, assembly has a very different syntax
Oh, I know. I meant that we had to take courses on older languages as part of the curriculum. That was a funky little college program. The oddest experience for me was taking Python back in the day as the “new thing” then not seeing it again until it absolutely exploded ~10 years ago. That program is also why I ended up playing with Linux so early on. The professors truly seemed to have a passion for emerging technologies while not wanting anyone to forget what came before. Thankfully, no punch cards.
We used turbo pascal in school in the early 90’s. And it had assembly blocks… which I used copious amounts of because it was the only way to make the IBM PS/1’s do useful graphics.
Syscalls are sitting right there, and you can always just link libc…